Verbindung hergestellt.connected.
num: 29543
-------------------------
GRUPPE: de.sci.mathematik
FROM  : Carlo XYZ 
DATE  : Fri, 21 Nov 2025 11:35:06 +0100
TEMA  : Re: Wer ist hier ein Schwachkopf?
---------------------------------------------
WM wrote on 19.11.25 19:31:

> Gefasel von Schwachköpfen ist irrelevant. Dass dieser Referee der 
> Mathematica Scandinavica ein außergewöhnlicher Schwachkopf ist, beweist 
> schon seine Behauptung, dass in meinem Beweis Dubletten übersprungen 
> werden müssen.
> 
> Intelligentere Referees sehen das anders:

Der war offenbar erfreut über das Papier von Kempner. Ich sag ja:
Mathematikhistoriker könntste werden, vorzugsweise ohne Ideologie.

Den Rest fand er nicht so doll. Und falls es sich um das Papier
für Mathematica Scandinavica gehandelt haben sollte, hat er nicht
mitbekommen, dass du offenbar versucht hast, deine fehlerhafte
Idee, es könne zwischen N und Q+ (oder der Menge aller Brüche)
keine Bijektion geben, zu verkaufen. Also ein inkompetenter
Rezensent, von wegen "accurate". Wie gesagt: deine Ambitionen
bezüglich Widerlegung von Cantor oder "der Mengenlehre" werden
mit deinem Ableben ins Nirvana verschwinden. Und das zu Recht.

> 1.     Summary
> This article shows another means of proving the existence of ‘Dark 
> Numbers’ (as discussed in W. Mückenheim: "Evidence for Dark Numbers", 
> Eliva Press, Chisinau, 2024, pp. 1-36) by means properties of the 
> Kempner series first discussed in A. J. Kempner: "A Curious Convergent 
> Series", American Mathematical Monthly 21 (2), 1914, pp. 48–50.  The 
> paper also uses a proof of convergence found in T. Schmelzer, R. 
> Baillie: "Summing a Curious, Slowly Convergent Series", American 
> Mathematical Monthly 115 (6), 2008, pp. 525–540.  Dark numbers are found 
> by considering series obtained from the harmonic series by stripping 
> away certain Kempner series.
> 
> 2.     General Remarks
> I think this is a very interesting paper.  The final result is not so 
> striking, but the use of Kempner series is really worth reading about. I 
> sure wish I had known about them when I was teaching calculus many years 
> ago.  I think this is an ideal paper to publish in ....  It introduces 
> the idea of dark numbers, which I suspect most readers will not have 
> heard of and it acquaints readers with the Kempner series, which should 
> be included in all calculus courses as an example of the relationship 
> between convergence and divergence of infinite series.  The technical 
> requirements are minimal, including the geometric series and the 
> comparison test for convergence of infinite series.
> 
> 3.     Main Suggestions
> I didn’t find any significant changes to be made.  The paper is well 
> written and accurate except for two typos discussed in the next section. 
>   I do think there should be more discussion of the first example of 
> dark numbers in section 1.  I’m not sure what the dark numbers being 
> suggested there are.
head: