Verbindung hergestellt.connected.
num: 29624
------------------------- GRUPPE: de.sci.mathematik FROM : Blacky CatDATE : Mon, 15 Dec 2025 19:26:52 +0100 TEMA : Re: Dunkle Punkte --------------------------------------------- Hallo, Aber nach Schroeddinger, wird durch "Beobachten" des Systems (an einen Punkt) erst definiert bzw. sichtbar. Ob das nun dunkle oder helle Punkte ist ja erstmal irrelevant - es sind graue Punkte, den durch die gegebene "Unschärfe" (die entsteht, wenn wir etwas "glauben" gesichtet zu Haben, aber nicht eindeutig zuordbar ist), sind nicht "alle" Teile des Punktes sichtbar, und es entsteht ein Streu- licht, ja, ein Grenzwert. Dieser Grenzwert ist einfach der Radius des Kreises/Kugel vom Mittel- punkt zum Rand, dreimal am Umfang in der gleichen Spanne angelegt. Der übrige Wert (ja: rund ist nicht gleich rund bzw. vollständig) erge- ben die irrationale PI-Zahl, von der man spricht, das sie kein Ende hat, ergeben den Rest zum halben Umfang des Kreises/Kugel. Somit könnte man den Gedanken aufstellen, das die Strecke also die Linie die vom Mittelpunkt des Kreises/Kugel zum Rand garnicht erst hinreicht. Und "immer" eine helfende Hand gebraucht wird, den Übergang von einen bestehenden System (hier die "fast" exakte Länge der Linie) in ein and- eres benötigt wird. Es könnte dadurch der Eindruck entstehen, das durch die nicht endlichen Punkte auf einer Kreislinie oder auf der Oberfläche einer Kugel garnicht nicht endlich sind und nur eine wortspielerrei ist "garnicht, nicht end- lich" macht dann doch "nicht" endlich. Aber mit den obigen Gedanken kann man den Gedanken andeuten, das es zwar eine Fläche gibt, die vollständig ist. Aber dem ist ja nicht so. Es feh- len ja rund 3.1415... PI-Einheiten zum "vollkommenden" Kreis. Diese Lücke mag zwar auf kurzer Sicht klein oder micromäßig erscheinen. Sobald man aber die Dimension potenziert, kann man einen gewaltigen Un- terschied erkennen, in der man keine weiteren Zahlen reininterpretieren kann, da irrational ja nie endet, und daher PI nicht fest definiert und daher "dunkel" - "undefiniert" ist. Hinzu kommt ja noch, das dieser Grenzbereich (PI) von "jedem" untersch- iedlich wahrgenommen wird... Das man PI bis von jedem Menschlein zu einen bestimmten Grade/Punkt als Zahl auffassen (man kennt sie kollektiv, da sie vorgegeben werden und da sich dann der Großteil der Menschlein sich nicht die Mühe macht, und die Richtigkeit untersucht, bleiben auch die bestehenden Daten "dunkel". Man spricht dann nicht umsonst auch von "Dunkelziffer". Man weiß zwar eine Menge, aber die genaue Anzahl ist unbekannt... Blacky -- Diese E-Mail wurde von Avast-Antivirussoftware auf Viren geprüft. www.avast.com head: